
Sonic Anemometer Data Aquisition Program

Werner Eugster, ETH Zürich

Refers to Software Version 8.09
Document Date: May 3, 2019

Contents

1 Introduction 2

2 Quickstart Notes 2

3 Principle of Operation 2

4 Getting Started 3
4.1 POWERCONTROL Option . 3

5 Running the Program More Than Once 3

6 File Header 5
6.1 WECOM3 Header Format . 5

6.1.1 Freeform extension data option . 5
6.2 Important update with sonicreadHS version 8.00 and higher 7
6.3 WESAT3 Header Format . 7

7 The Log File 7
7.1 Interpretation of the Log File . 8
7.2 Other Means of Controlling the Operation of the FogMonitor 9
7.3 Other Means of Controlling the Operation of the IRGA . 10

8 The Resource File 10

A Binary WECOM3 Raw Data Format 12
A.1 Header . 12
A.2 Data . 13

A.2.1 Standard anemometer data . 13
A.2.2 Additional data from digital instruments . 14

A.3 FogMonitor data . 14
A.3.1 Data Format and Flag Bits of the FogMonitor data 14
A.3.2 Status Flag Details of the FogMonitor data . 15
A.3.3 Reset Flag . 15
A.3.4 RejDOF Flag . 15
A.3.5 RejAvgTrans Flag . 16
A.3.6 FIFOfull Flag . 16
A.3.7 No Response Flag . 16
A.3.8 Checksum error flag . 16
A.3.9 Condensed Data Mode . 16
A.3.10 How to know the droplet size definitions of each FM-100 channel? 17

A.4 IRGA data . 18
A.4.1 Licor 7500 . 18
A.4.2 Licor 7000 . 19
A.4.3 Licor 7200 . 19
A.4.4 Raw data errors of the Licor 7200 . 20

1

A.5 Secondary IRGA data . 21
A.6 Extension data (QCL, LGR) . 21

A.6.1 Data from a second QC-TILDAS . 21
A.6.2 Los Gatos Research Data . 22

B Binary WESAT3 Raw Data Format 23
B.1 Header . 23
B.2 Data . 24

B.2.1 Standard anemometer data . 25
B.2.2 IRGA, QCL and LGR data . 25

C Hints and Suggestions 25
C.1 How to get a CSAT3 up and running . 26

1 Introduction

This is a short user manual for the sonic anemometer data aquisition program sonicreadHS which oper-
ates with the new Solent R3/HS sonic anemometer, the old R2 sonic anemometer, or the Campbell CSAT3
anemometer, version 8.05.

Starting with version 7.00 I omitted blocking read on the serial port under normal operation. We
had a couple of issues when the sonic anemometer was correctly working at startup (where nonblocking
read was used even in older versions), but later failed. This was no problem on standard computers or
laptops, but on MOXA computers with the ARM RISC processor this tended to block the CPU and freeze
everything. Without blocking read we have to be more careful with what additional load we allow on the
computer, but experience shows that this software works quites smoothly even without blocking read.

2 Quickstart Notes

• For the InnoFarm project we need sonicreadHS version 8.04 in combination with lgrread version
2.00 and we must specify the -e1.7 command line option to sonicreadHS.

• For ICOS Davos we need sonicreadHS version 8.09 in combination with licor version 3.02 and we
must specify the -li command line option to sonicreadHS. Additionally, we should use an IRGA
TCP/IP data stream buffer via the -B command line option, and to name the ASCII files for ICOS
(30-minute data files according to the ICOS specifications) correctly, the -F5 option must be used
to set file number #5 for these additional files. The full command line with all options for ICOS is:
/usr/local/bin/sonicreadHS -n -li -e1.6 -F5 -B

3 Principle of Operation

The purpose of sonicreadHS is to

• configure the Solent HS research sonic anemometer (including R3, R3A, R3-50, HS-50 probably
also) or a Campbell CSAT3 anemometer (firmware 4.0 or higher), or an old Solent R2 or R2A

• receive data from the anemometer

• optionally receive data from the Fog Monitor via a message queue

• optionally receive data from the Licor 7500, Licor 7000, or Licor 7200 IRGA via a message queue

• optionally receive data from a second Licor via an additional message queue (since V. 7.03)

• optionally receive data from extra instruments (currently implemented for QCL data or LGR data)
via a message queue

• check incoming records for errors (block numbering)

• save correctly received data on disk

2

• periodically open a new file to avoid too large files

• periodically send out data to a message queue for potential monitoring of the program’s operation

A special feature was introduced in version 3.09 to support the cheaper Solent GILL R3-50 ultrasonic
anemometer which does not have an inclinometer. We use the same program and settings as for the
HS sonic anemometer, but if we detect that the records with the inclinometer data are missing, then we
switch to the mode that is appropriate for the R3-50 sonic.

4 Getting Started

First of all, your Solent sonic anemometer must be put into binary communication mode. The manufac-
turer delivers the anemometers with the setting on ASCII mode, which we do not support. Run the DOS
software (RCOM3) that came with the sonic anemometer one time and set the configuration to BINARY,
and leave the programm. After this, your sonic should be ready for our data aquisition system.

To start the sonic anemometer data aquisition program use the following command line

sonicreadHS [options]

with the options specified in Table 1.
Note that sonicreadHS reads a resource file sonicrc in the current working directory to find the

settings it should use. This resource file is re-read every time the internal alarm clock expires to open a
new file. To force a re-read of sonicrc one needs to send a SIGALRM signal to the running process. The
easiest way to do so is via the use of a simple script, newfile which should be installed on the computer.
newfile finds the process ID of the running program and asks you whether it should force this process to
re-read its resource file. You need to reply with yes to see any action. Any abreviations or other answers
are ignored and no changes to the running status of sonicreadHS will be effectuated.

4.1 POWERCONTROL Option

There are rare cases where a Gill/Solent sonic of the newer model may be stuck in interactive mode and
the baud rate appears to be undeterminable. This condition can only be solved with a hard power reset of
the instrument. This can also be done by compiling the code with POWERCONTROL set to ON in the Makefile.
If this is active, an additional serial port defined via SONIC CONTROLPORT in scntl.h can be used to hook
up a relay circuit that does a 10-second hard power reset of the sonic anemometer during startup. By
default we use the symbolic device /dev/sonic-control.

The support of CSAT3 sonics with this feature is not yet done, but should be added in a future version.

5 Running the Program More Than Once

In Version 5.01 we introduced a new concept that became necessary to run the same data acquisition
programs more than once on one single computer, e.g. for intercomparison of flux instruments. This
requires that different serial ports are used by the instruments, and the data are exchanged via specific
interprocess communication queues that connect each instrument with its corresponding sonic anemome-
ter data acquisition. This is done via the new -s switch, followed by a number from 0 to 9 (in principle,
other single characters may also work).

For backward compatibility, -s0 is the default and uses the standard naming of serial ports and IPC
queues as it was the case with earlier versions. That means, that the sonic anemometer is read from
/dev/sonic, the IRGA from /dev/irga and so on.

For other numbers, these device names are expanded by the same character (number). E.g. when we
start our data acquisition as
sonicreadHS -s1

then this will read from /dev/sonic1, and screen display must be made with sonicshow -s1 (otherwise
it will read from the default queue which corresponds to -s0).

The device names are normally links to the correct devices on the system, e.g. made as root via
ln -s /dev/ttyS17 /dev/sonic

ln -s /dev/ttyS18 /dev/sonic-control

3

Table 1: Command line options of sonicreadHS.
Option Explanation

-A special features for ICOS analog tests
-B install a 20 record stream buffer for the IRGA
-c save SONIC raw data in separate file in working directory
-d only with CSAT3: switch ON delimiter mode (delimiter ON)

-e#.# receive data from an extra instrument using an extension versioning system; version is one digit
from 0 to 7 before the decimal point, variant is a one-character hex code from 0 to f. See Table
3 for the correct numbering

-F # save ICOS data in files using ¡number¿ in the FFN name component
-fm receive Fog Monitor data blocks from the Sys V IPC message queue and append them to the

anemometer data, and save them on disk. If this option is specified, the file type will be ’F’ (see
Table 2).

-f is synonymous to -fm

-I# allows to also receive IRGA data from a secondary IRGA that runs with the specified system
number; these data will added to the data stream immediately after the ones of the default
IRGA

-i is synonymous to -li

-li receive IRGA data blocks from the Sys V IPC message queue and append them to the anemome-
ter data, and save them on disk. If this option is specified, the file type will be ’I’ (see Table
2).

-l is synonymous to -li

-M XXXX (with XXXX = CSAT3 or METEKu3) use the CSAT3 communication protocol for Campbell
CSAT3 sonic anemometers running firmware 4.0 or higher, or the METEKu3 protocol for a
METEK µ3 sonic anemometer

-m is synonymous to -fm

-n no realtime scheduling; this switches off the realtime scheduling priority which could block a
newer computer/linux installation for all other processes (this is the switch I have to use with
kernel 2.4.20-8 from RedHat Linux 9.0 on an Acer TravelMate 242LC with 2.4 GHz processor
speed)

-o switch off the delimited mode of the CSAT3 sonic; only has an effect in combination with -M
CSAT3. Currently the software has not yet succeeded to switch the sonic to delimited mode and
use it correctly, thus you need to specify -o when working with a CSAT3!

-R2 use the Solent R2 (fastcom) communication protocol; note that this only works if the internal
jumpers on the motherboard of these old sonics is set to the position to deliver single records
(default is to send blocks at 20 records which is not supported by this data acquisition program
here)

-R3 use the default Solent HS or R3 protocol (works with all newer solent sonics that come with an
RCOM3 software diskette for DOS operating systems); this switch is ignored since this is the
default

-r read-only mode. This allows to bypass the configuration step, so that sonicreadHS can work
with a sonic that cannot be configured. It however requires that you tune sonicreadHS in a
way that its settings match the true settings that the sonic actually is running with. Check your
sonicrc file.

-s# run as system number 0 to 9; this allows to run several instances of the same program on the
same computer for more than one sonic anemometers and additional sensors. -s0 is the default
and is ignored (default behavior conforms to what we used in older versions)

-u this is an experimental and unsafe option which tries to unlock the sonic anemometer in case
there is no continuous data stream at the serial port. But because there are many possibilities
why there are no incoming data, it often does not save you the trip to the power switch of the
sonic anemometer to switch it off and on again physically. However, with the POWERCONTROL

option active, you can use a relay to do a physical power reset on the sonic anemometer.
-v produce verbose output (good only if there are problems to be tracked down).
-x configure sonic for the first time (from factory settings), normally used when the Gill sonic is

set to ASCII data output mode instead of BINARY

4

Note that if /dev/sonic-control is not used, then it should be linked to /dev/null. This is a serial
port that allows to do a hard power reset on the new Solent sonics which have the conceptual error that
they can get stuck in interactive mode at unknown baud rate which never times out. This feature is only
available with special electronics (a relay switched via one of the handshaking lines of that second serial
port) and is most likely not used by others.

6 File Header

The file header (Section 6.1) corresponds to the definition given in the user manual of the Solent HS
research ultrasonic anemometer (Doc. No. 1199-PS-0003-Iss 4) unless we use a CSAT3 instrument with
the -M CSAT3 option (Section 6.3).

6.1 WECOM3 Header Format

The only but important difference is the labeling of the file type.
The header contains a member file type which can have the values given in Table 2.

Table 2: File types of Solent R3/HS sonic anemometer data.
Value Meaning Defined by

0 ASCII tabular Solent user manual
1 Binary tabular Solent user manual
2 ASCII micro-met Solent user manual
3 Binary micro-met Solent user manual
A Werner Eugster’s binary format without FogMonitor data here
F Werner Eugster’s binary format with FogMonitor data here
G Werner Eugster’s binary format with FogMonitor and IRGA data here
I Werner Eugster’s binary format with IRGA data here
K Werner Eugster’s binary format with IRGA data from 2 systems (since V. 7.03) here

other Werner Eugster’s binary format (see below) here

To allow for more special instruments for flux measurements we introduced a more general “exten-
sion” that uses bits 5 and 4 of the file type byte. Thus, the concept is that we by now have the two
instruments FogMonitor and IRGA that we want to use as standard instruments in any combination with
the sonic, and if we add more instruments, we’ll do this via the extension option. Because we only have
3 bits left in this header byte, and with sonicreadHS version 8.0 we want to use bit 7 to mark the new
version 2 sonic data format, we can use an extension version in the range 0 to 3 (bits 5 and 4), where 0
is defined as the setup without any extensions, and 1–3 can be used in fact. This is not perfectly flexible,
and thus we use a variant in addition to the extension. The variant is not saved in the header, but in
the individual records. This will allow to use more than one extra instruments at the same time, the only
issue is that we need to keep track of what the numbers mean such that we can learn our data processing
software what to do with the data.

So far we used extension version 1, variants 0–2 for EMPA data from the quantum cascade laser
system, and extension version 1, variants 3 and 4 for the two Los Gatos Research analyzers. If we’re
going to use this concept with Joseph McFadden’s CO analyzer we’ll call this extension version 2, variant
freely chosable. To keep track on what we did see Table 3.

6.1.1 Freeform extension data option

In sonicreadHS version 8.05 support for option -e1.f was introduced, which is the “freeform” option
that should simplify test setups for which we leave it to the user to keep track of what’s found in the
extension data. When specifying the -e1.f command line option the string messages that arrive via the
LGR message queue are not interpreted, but simply stored as a character string in the raw data files.
The concept is still the same that 2 bytes will be saved under all circumstances, the first specifying the
length of the data record (number of bytes to be read when reading a binary data file), and the second
byte being a status flag information. The number of bytes are no longer a fixed number or 2, since the
number of bytes will be determined from the length of the message received via the message queue. First
application was with the LUMEX experiment where we tried to measure Hg0 fluxes for the very first time

5

Table 3: Extension versions and variants.

Variant Content Columns
Version 1 reserved for W. Eugster

0 QCL EMPA N2O, CO2, H2O
1 QCL EMPA 12C16O18O, 12C16O2, 13C16O2
2 erroneous IRGA data from first

test
could be re-used

QCL Sturm&Knohl 12C16O18O, 12C16O2, 13C16O2, CO2
calibrated, δ13C, δ18O

3 LGR FMA CH4 data and house-
keeping variables

CH4, Cell-P, Cell-T, Mirror Ringdown
time, Calibration flag

4 LGR FGGA CH4, CO2, H2O
data and house-keeping vari-
ables (since version 5.12)

CH4, CO2, H2O, Cell-P, Cell-T, Mirror
1 Ringdown time, Mirror 2 Ringdown
time, Calibration flag

5 QCL EMPA CH4, N2O, NO2, H2O
to reduce the number of variants, the following formats were hardcoded in 1.6
they can be distinguished based on the number of bytes in the record

6 QC-TILDAS ETHZ CH4, N2O, H2O until V. 7.05
6 QC-TILDAS ETHZ CH4, N2O, H2O, TEMP, PRESS

since V. 7.06 (2015-05-18)
6 QC-TILDAS ETHZ ICOS Davos CH4, N2O, H2O, CO2, TEMP, PRESS,

StatusW, VICI valves
since V. 7.07 (2015-11-13)

7 LGR CH4/N2O/H2O see Table 14; first used with InnoFarm
in 2018 (sonicreadHS version 8.04, lgr-
read version 2.00)

8 unused
9 unused

a–e unused
f freeform – generic solution that

stores the text data string from
the message queue “as is”

depends on what the supply program
(qclread, lgrread, . . .) delivers

Version 2 reserved for W. Eugster and collaborators
0–1 unused
2 QC-TILDAS from two data

streams (since V. 7.09 for Lutz
Merbold’s Mazingira project)

Format according to qclread V 2.04 or
higher. Uses component-specific con-
version, see Table 11.

3–9 unused
a–f unused

Version 3 unused

6

and simply sent the date and timestamp from the embedded windows system of the LUMEX analyzer to
sonicreadHS. Since the extension data will be recorded in ASCII format “as is” they should be readable
and indicate what file this is, in case information was lost what variant 1.f files contain.

MSB LSB
7 6 5 4 3 2 1 0

{

Original
RCOM
types

{
WECOM3

types
WECOM3

types{ {
Bits 5 and 4
are used for

WECOM3
Extensions

{{
WECOM3 types:
x0xx01xx: 4–7
x0xx10xx: 8–11
x0xx11xx: 12–15
x1xx00xx: @, A–C
x1xx01xx: D–G
x1xx10xx: H–K
x1xx11xx: L–O

Bit 7 is now used for
the V2 WECOM3 data

format

WECOM3
version 2
�ag

Figure 1: Bits of the file type byte. Bit 7 was redefined with version 8.00 of sonicreadHS, but was
never used before this redefinition.

6.2 Important update with sonicreadHS version 8.00 and higher

The bits in the file type byte were reserved as in shown in Figure 1. Since we have only used extension
versions 1 and 2 so far, I made the decision to redefine bit 7 to mark version 2 WECOM3 data. Thus, we
reduce the possible extension versions to 1–3 (we still have many variants that we can use). Since this
redefinition of bit 7 does not affect any data files that we have collected so far, I modified the text above
on 2017-07-03 to reflect the new data format definition.

6.3 WESAT3 Header Format

For support of CSAT3 sonics we also changed the header format, but the concepts for the WESAT3 files
is identical to the WECOM3 files apart from the difference in header and difference in bytes holding the
sonic anemometer data. This header is 38 bytes. For details see the documentation of the eth-flux data
processing software.

7 The Log File

The log filename is specified in sonicrc. If there is no sonicrc file, the default will be something like
sonic.log. An example is given below:

***** STARTING sonicreadHS version 2.32 from 25 February 2000 Fri Feb 25 12:07

:50 2000

Message queue 128 installed for reading FogMonitor data. Fri Feb 25 12:07

:50 2000

unable to find sonic at baud rate 15 Fri Feb 25 12:08:03 2000

found sonic at baud rate 17 Fri Feb 25 12:08:04 2000

found sonic at baud rate 17 Fri Feb 25 12:08:05 2000

found sonic at baud rate 17 Fri Feb 25 12:08:07 2000

7

found sonic at baud rate 17 Fri Feb 25 12:08:27 2000

Sonic HS serial number is 000027 Fri Feb 25 12:08:28 2000

Sonic HS sampling rate (average 10) is 10.0 Hz Fri Feb 25 12:08:29 2000

Sonic internal software version 2.01 2076_201 R3> Fri Feb 25 12:08:29 2000

found sonic at baud rate 17 Fri Feb 25 12:08:30 2000

alarm signal received 0 0 0 0 Fri Feb 25 12:08:30 2000

User settings: data path "./" file code "b" Fri Feb 25 12:08:30 2000

mode 1 analogs 0 baud 17 changefile 6 hours Fri Feb 25 12:08:30 2000

opening data file ./2000022512.b09 Fri Feb 25 12:08:30 2000

next file scheduled in 24678 seconds Fri Feb 25 12:08:30 2000

new FM status: 202 118 Fri Feb 25 12:08:31 2000

new FM status: 42 118 Fri Feb 25 12:09:15 2000

new FM status: 42 118 Fri Feb 25 12:09:59 2000

new FM status: 242 2 Fri Feb 25 12:10:00 2000

Important are entries where there were record numbering problems:

record numbering problem 9 -> 186 (10, 1) Fri Feb 25 15:47:26 2000

alarm signal received 0 0 0 0 Fri Feb 25 15:47:26 2000

We’ll have to keep an eye on this. It seems that there are some interferences with operating two high-
frequency instruments at the same time. It could be that we will have to look for the Real-Time Linux
extensions some day.

7.1 Interpretation of the Log File

***** STARTING /var/hda/progs/sonicreadHS version 7.06 from 18 May 2015 Mon May 18 10:53:17 2015

Whenever the program is started, it leaves such an entry in the log file. The date and time given on
the far right side is always the timestamp when this happened. The information version 7.06 from

18 May 2015 shows which version of the program is run (the number 7.06 is hard-coded in the source
code), and when this version was compiled. Hence there may be different compilation dates for the same
program version; this may be necessary if the same program is run on different computer platforms,
which normally means that one recompiles the source code for that platform. For example, a MOXA
embedded computer runs an ARM X-Scale processor and thus programs must be compiled for ARM X-
Scale processors. At other sites Intel processors may be in use, and hence the program version is compiled
for Intel processors, either for 32-bit operating systems or 64-bit operating systems.

Data files will use extension version.variant 1.6 Mon May 18 11:01:20 2015

If data from a QC-TILDAS or from a LGR FMA/FGGA or similar are added to the data from the sonic
anemometer, then such an entry is made which specifies the version/variant number that you specified
at startup with the -e switch. This information is also found in the header of each binary data file, so this
is simply redundant information for your archive.

Message queue 0 installed for reading primary IRGA data. Mon May 18 11:01:20 2015

Message queue 98307 installed for reading QCL data. Mon May 18 11:01:20 2015

Each additional sensor sends its data via a Unix System V message queue. Here you see the queue
numbers that are used to receive the data at full resolution, for the IRGA (Licor 7500, Licor 7000, Licor
7200 etc.) and for the QC-TILDAS (QCL).

Sonic power control signal is DTR on device /dev/sonic-control Mon May 18 11:01:30 2015

There is the option to have a power-reset relay installed to repower the sonic anemometer at startup.
If this option is used and configured, this entry shows you which serial port is used and which signal
(DTR) to activate the relay to interrupt power.

unable to find sonic at baud rate 16 Mon May 18 11:01:34 2015

found sonic at baud rate 17 Mon May 18 11:01:35 2015

8

Each sonic anemometer model has one or more baud rates at which they may communicate. At startup
the programm cycles through the baudrates that were specified in the source code to find the sonic. The
baud rate numbers are given in magic numbers as they are assigned in e.g. /usr/include/sys/termios.h.
Under Linux 15 means 9600 baud, but on MacOS 9600 is shown here. 16 means 19200 under Linux, and
17 is 38400 baud, but be aware that these magic numbers really depend on the system. The important
point is that at least one entry found sonic must be seen to have confidence that the sonic data stream
was correctly arriving at the data acquisition serial port.

Sonic R3-50 serial number is 000348 Mon May 18 11:03:27 2015

Sonic HS/R3/R3-50 sampling rate (average 5) is 20.0 Hz Mon May 18 11:03:28 2015

Sonic internal software version 3.01 2076_301 Feb Mon May 18 11:03:29 2015

If communication with the sonic anemometer can be established, the serial number (for Gill sonics
only) is stored in the header of the data files and in the log file. Additional information on how the data
stream is interpreted follows in the log file. The sonic anemometer is configured according to the settings
in sonicrc, and the sampling rate is explicitly documented in the log file (20.0 Hz in this example).

alarm signal received 0 0 0 0 Mon May 18 11:03:33 2015

Once the data acquisition starts, all modifications are made via alarm signals. Hence, and alarm
handler is installed, and the four figures (0 0 0 0) show the status of four flags that help debug issues
that may arise.

User settings: data path "./" file code "b" Mon May 18 11:03:33 2015

mode 1 analogs 0 baud 17 changefile 6 hours Mon May 18 11:03:33 2015

opening data file ./2015051811.b05 Mon May 18 11:03:33 2015

next file scheduled in 10555 seconds Mon May 18 11:03:33 2015

If everything is ready for data to be stored on disk, a data file is opened and the data start streaming
to that file at zero seconds of the time and date specified in the file name and in the header of that file.
So, if the file name sais 2015051811.b05, then this means: first data record (in binary format) in this file
has the time stamp 2015-05-18 11:05:00.00 local time. In Switzerland local time is set to CET (Central
European Winter Time).

new IRGA status: 0 16 Mon May 18 11:03:33 2015

new IRGA status: 200 2 Mon May 18 13:15:08 2015

new IRGA status: 0 16 Mon May 18 13:15:09 2015

new QCL status: 011 (22 bytes) Mon May 18 11:03:33 2015

new QCL status: 001 (22 bytes) Mon May 18 11:03:34 2015

During operation the changes in the status of the status byte of the additional instruments (IRGA,
QCL, . . .) is recorded in the log file. The status is an or combination of the status bits received turing
an entire second. The exmple above shows a case where no data were received from the IRGA on May
18 at 13:15:08 (no data means: no data during a longer period than what we hard coded for the typical
behaviour of that instrument), but the second after the condition went back to OK.

No inclinometer present (this might be a GILL R50 anemometer) Mon May 18 11:03:34 2015

This entry is seen if no inclinometer data seem to arrive. For the sake of a consistent data format we
hence store zeros in place of the inclinometer data in the raw data file.

7.2 Other Means of Controlling the Operation of the FogMonitor

Because the data are passed from the Fog Monitor to the sonic anemometer data aquisition program
by an interprocess communication pipe, you can also monitor the FogMonitor’s actual status by using
sonicshow (in the TOOLS directory of the sonic anemometer data aquisition program source code).

An example of the screen output from sonicshow is the following:

9

0.00 -0.02 0.01 294.08 20.93 -0.50 -1.61 FM 0

0.01 -0.03 0.01 294.09 20.94 -0.50 -1.61 FM 0

0.01 -0.02 0.00 294.08 20.93 -0.50 -1.61 FM 40

0.01 -0.02 0.00 294.08 20.93 -0.50 -1.61 FM 40

0.01 -0.02 0.00 294.08 20.93 -0.50 -1.61 FM 240

0.01 -0.02 0.00 294.08 20.93 -0.50 -1.61 FM 201

0.02 -0.01 0.00 294.09 20.94 -0.50 -1.61 FM 0

0.02 -0.01 0.00 294.08 20.93 -0.50 -1.61 FM 40

0.02 -0.01 0.00 294.10 20.95 -0.50 -1.61 FM 0

If you started sonicreadHS without the -fm option, you will not find the letters FM and the status
information at the end of the lines, but the rest will be exactly the same.

7.3 Other Means of Controlling the Operation of the IRGA

The same applies to IRGA data collected with the -li switch. Just the letters LI followed by the status
information is shown. Most important to know is that status 0 is always OK and 40 is OK depending on
configuration, whereas all other numbers indicate a problem (e.g. 200 indicates that no data is coming
in from the IRGA). Status 40 means that the records from the IRGA are not new. This can e.g. happen
when Sonic and IRGA both run at 20 Hz, but the sonic is slightly ahead of the IRGA. This means that
the current sonic record is merged with the previous IRGA record. Since we will determine the time lag
later, this will just affect this time lag by one in this special case. Another case that is OK is when we have
the sonic running at 20 Hz but the IRGA is only running at 10 Hertz. Since we only display 1 record per
second in sonicshow we decided to show the worst status of any records that was received within the
last second. Thus, although only every second record from the sonic should not have a matching IRGA
record, we’ll get status 40 although this is perfectly OK in this case.

8 The Resource File

The resource file is a simple ASCII text file. Each line begins with a token which can be interpreted by
sonicreadHS. Valid tokens are: COMMENT, DATAPATH, ANALOGS, MODE, BAUDRATE, CHANGEFILE,
FILECODE, LOGFILE, and AVERAGE. An example is given below.

COMMENT This is a sample sonicrc file by Werner Eugster

DATAPATH ./

COMMENT the old sonic anemometer has 5, the new HS sonic 6 analog channels

ANALOGS 0

COMMENT MODE is ignored; leave it with a 1

MODE 1

COMMENT the old sonic anemometer works with 4800, 9600 or 19200

COMMENT the new HS sonic anemometer works with 9600, 19200 or 38400

COMMENT the CSAT3 sonic anemometer only works with 9600 (19200 does not work)

BAUDRATE 9600

COMMENT CHANGEFILE is an integer; after ... hours a new file will be opened

CHANGEFILE 6

COMMENT FILECODE is one character that will appear in the filename ext.

FILECODE b

LOGFILE myeddyfluxsystem.log

COMMENT below are additional settings for the new Solent HS sonic

COMMENT with the 50-Hz (cheaper) sonics it is as follows:

COMMENT AVERAGE 1 is 50 Hz, AVERAGE 3 is 16.7 Hz, AVERAGE 5 is 10 Hz

AVERAGE 5

COMMENT below are additional settings for the CSAT3 sonic

COMMENT sampling rate of the CSAT3 is specified via a execution parameter

COMMENT which is one character from 1,...,9,a...h

COMMENT 60 Hz averaged to 10 Hz is g

COMMENT 60 Hz averaged to 20 Hz is h

COMMENT point sampling (no averaging): 10 Hz = 9, 12 Hz = a, 15 Hz = b, 20 Hz = c

10

EXEPARA h

COMMENT define where IRGA data should be tanken from for averaging

COMMENT valid options are: ANALOG, DIGITAL, BOTH or NONE

IRGA BOTH

COMMENT IRGA 2nd order conversion from millivolts to concentration

COMMENT introduced in version 3.01; conc = a0 + a1*x + a2*x^2

COMMENT format: three floating point numbers for a0, a1, and a2

IRGA_CO2 0.0 1.0 0.0

IRGA_H2O 0.0 1.0 0.0

COMMENT lines are ignored. Also the MODE setting is ignored (we always use calibrated mode).
Important settings are the baudrate settings (BAUDRATE), and the sampling rate setting (AVERAGE).

The CHANGEFILE setting takes an integer number of hours, afte which a new file will be opened (to
keep file size reasonable). If you specify 6 hours, this means that at 00:00 UTC, 06:00 UTC etc. you will
get a new file. Thus, in local time new regular files will start 01:00 MEZ or 02:00 MESZ etc.

The FILECODE setting takes a single character (e.g. the letter b) which is incorporated in the filename
creation. File names contain date information and the time when data collection started. An example
with FILECODE b looks like this:

2000022517.b09

The format is YYYYMMDDhh.#mm, where YYYY is the 4-digit year, MM is the 2-digit month, DD is
the 2-digit day of the month, hh is the 24-base hour of local (system) time, # is the FILECODE, and mm
is the minutes in the our. The program always waits until the beginning of that minute with saving data.
It creates the 29-byte header in due time, then sends old data to the old file until 0 seconds of minute
mm start, where the old file is closed and the data are appended to the new file.

The ANALOGS setting indicates how many of the internal analog inputs of the sonic anemometers are
used. sonicreadHS only supports a range of channels that start with the first channel (thus no possibility
to individually switch on or off a channel). A value of 0 indicates that no analog input channels should
be used. A value of 3 indicates that channels 1, 2, and 3 are switched on and recorded.

The BAUDRATE setting is typically 38400 (38400 baud) for the new HS sonic. Use a value that is
valid for the sonic anemometer!

The AVERAGE setting indicates how many internal records are averaged to produce one output record
by the sonic anemometer. This influences the sampling output rate of the sonic anemometer. For example,
to yield 20 Hz with a Solent HS sonic (internal sampling at 100 Hz) this value is set to 5.

The IRGA CO2 and IRGA H2O settings are new in version 3.01 and indicate how internal values
are converted to concentration readings for the online output of average values. This is only meant for
control purposes. To get correct concentration and flux values a post-processing of the raw data is still
necessary. Three floating point numbers separated by one or more white space characters must be given
for the coefficients a0, a1, and a2 of the second order transfer polynome c = a0 + a1 · x + a2 · x2, where
x is the millivolt reading of the respective channel and c is the concentration value. Default values are:
a0 = 0.0, a1 = 1.0, and a2 = 0.0.

11

A Binary WECOM3 Raw Data Format

The binary raw data formats 0, 1, 2, and 3 are described in the Solent Ultrasonic Anemometer’s User
Manual (RCOM3 format).

The additional formats introduced by Werner Eugster (currently A, F, G, I, K) use a similar format but
with a few changes and extensions described here.

A.1 Header

Each binary file contains a header of 29 bytes as described in the Solent Ultrasonic Anemometer’s User
Manual. The bytes have the following meaning (copied from the convertall source code):

typedef struct /* the new HS header size is 29 bytes */

{

unsigned char file_type;

unsigned char file_version;

unsigned char type;

unsigned char serial_number[4];

unsigned char average;

unsigned char wind_report_mode;

unsigned char string_format;

unsigned char ascii_terminator;

unsigned char echo;

unsigned char message_mode;

unsigned char conf_tone_setting;

unsigned char axis_alignment_setting;

unsigned char speed_of_sound_report_mode;

unsigned char abs_temp_report_mode;

unsigned char an_input_1;

unsigned char an_input_2;

unsigned char an_input_3;

unsigned char an_input_4;

unsigned char an_input_5;

unsigned char an_input_6;

unsigned char an_output_scale;

unsigned char an_output_wrap;

unsigned char file_create_time[4];

} HEADERTYPEHS;

As in RCOM3 the data itself are saved in big endian format, that is, the first byte of a multi-byte
integer number is always the most significant. However, be aware that there are differences to this in the
header, which are inconsistent, but have been set into the world by Gill/Solent. Changes compared to
the original header of the RCOM3 files:

• type: in addition to 0–3 one finds the new file type code here. My type A is saved as decimal
character 65, type F is decimal character 70, type G is decimal character 71, type I is decimal
character 73 (corresponding to the position of the capital letters in the ASCII character set).

• file create time: in my variant of this binary format I did use the time stamp in local time, that
is, this 4-byte long integer gives the seconds since 00:00:00 local time, 1 January 1970. To my
understanding, the RCOM3 format is using time in UTC, thus depends on the time zone you have
selected on your computer while doing the data aquisition. I have also used the little endian
encoding also for the time stamp as in RCOM3, but be aware that all other data are saved in big
endian format!

• file version: When we record data from an old Solent R2 or R2A sonic (-R2 command line option
of sonicreadHS) then we find the values 99 or 98 in the file version field, and serial number

is set to the value 0x09090909. The file version 99 has two issues that need to be known: (a)
after the base data (wind, speed of sound, analog channels) there might be an extra byte that
should not be there, followed by 4 bytes with 0x00 that correspond to the inclinometer variable

12

that is however not available from R2/R2A sonics. In sonicreadHS version 5.07 we modified this
and eliminated the erroneous extra byte from R2 sonics, and omitted the 4 empty bytes of the
inclinometer variables.

• serial number: the magic decimal value 151587081 (or 0x09090909) indicates that we were using
an old R2 or R2A sonic. These do not provide their internal serial number in the communication
protocol, therefore we used such a magic number to label the files in addition to the file version

number.

If unsure about the encoding (litte endian or big endian): bytes number 4–7 (starting counting with
byte number 1) contain the serial number which typically is a small positive number with a lot of leading
zeros. At LäŁgeren, for example, I used the instrument with serial number 27.

A.2 Data

After the header bytes the data records follow. The concept is as follows: the standard data arriving from
the sonic anemometer are always present and have always the same format, no matter which of my own
file type is used. These data are saved unprocessed in binary format as they arrive.

If there are additional instruments to be recorded, then this is indicated by the unique file type. Type
G which I have not used so far, is a special one: if more than one instrument are combined, then each of
the instrument will add one record of data per record received from the sonic anemometer in the order
given by the naming. Thus, fog monitor data preceeds IRGA data.

A.2.1 Standard anemometer data

Data records contain 2-byte signed short integers for each component. The total size of one record de-
pends on the number of analog channels that are switched on (see the settings in the header!). Without
analog channels (that is, using a digital IRGA, for example), the sonic anemometer data contain 6 vari-
ables per record, which is 12 bytes (Table 4). With version 8.00 of sonicreadHS we introduced a change
that we call version 2 WECOM3 format: the inclinometer data are no longer saved in bytes 9–12 as
described in Table 4, but these 4 bytes are used differently as described in Table 5

Table 4: Base data from the sonic anemometer

Bytes Component Unit
1–2 u wind component cm/s
3–4 v wind component cm/s
5–6 w wind component cm/s
7–8 virtual temperature measured via speed of sound 0.01 K

9–10 inclinometer, x-axis 0.01 degrees
11–12 inclinometer, y-axis 0.01 degrees

Table 5: Base data from the sonic anemometer saved in version 2 WECOM3 files (these files have bit 7
set in the file type member of the header).

Bytes Component Unit
1–2 u wind component cm/s
3–4 v wind component cm/s
5–6 w wind component cm/s
7–8 virtual temperature measured via speed of sound 0.01 K
9–10 StaA and StaD bytesa binary copy from sonic data stream

11–12 inclinometer, x or yb 0.01 degrees
a StaA is status address (or record number) sent from the Gill sonic and StaD is the status data

sent by the Gill sonic. The meaning of StaD depends on the value of StaA
b In records with StaA being an odd number the most recent x-axis component is saved, whereas

in records with StaA being an even number the most recent y-axis component is saved

Note that the inclinometer data are treated as two analog channels which always are saved after all
other analog channels in case there are any of them switched on.

13

The analog channels however differ in that the values saved in the file must be multiplied by
0.61035283 to yield the raw voltages (see the Solent User Manual for details).

A.2.2 Additional data from digital instruments

If one or more digital instruments were operational then the base data are followed by at least two bytes
of additional data per instrument per record (Table 6).

Table 6: Additional data per digital instrument per record; byte numbers refer to byte after the ending of
the previous information, which may be either base data from that record or the data from the preceeding
instrument.

Bytes Content
1 byte count for the data from that instrument (at least 2 bytes)
2 instrument status code

3–n data if any, depending on the number given in the first byte!

Thus, as an example for IRGA data: if we decided to record IRGA data, but the IRGA was not opera-
tional, then we just get two additional bytes per record from the anemometer. The first byte will tell us
that there are two bytes to read, and the second byte gives us the reason why there are no more data (a
status code).

If data are present, then the first byte must be greater than two, depending on the instrument and
thus on the file type given in the header. For example, file type I has 16 bytes per record for the IRGA
data if they were available.

A.3 FogMonitor data

The data files only contain the raw droplet counts for each of the 40 size bins of the FM-
100. To know the diameter of each channel is a major issue, see Section A.3.10. A detailed
investigation of the problem has been published by Spiegel et al. (2012).

A.3.1 Data Format and Flag Bits of the FogMonitor data

The data format of the messages of type 0x1bac0002 in the message queue is as follows.
All bytes are rearranged to follow the fully high-endian definition. All bytes are unsigned characters

of 8 bit length, however, the numbers to be interpreted are either 8, 16 or 32 bit unsigned integer values.
The first byte gives the length of the message in bytes. Thus, after having read 1 byte and interpreted

its content n, we should expect n-1 more bytes to belong to this message.
The second byte is a status byte. The bits have the following meaning:

#define STATUS_OK 0000 /* no bits set */

#define RESET_FLAG_SET 0001 /* bit 0 set */

#define REJDOF_FLAG_SET 0002 /* bit 1 set */

#define REJAVGTRANS_FLAG_SET 0004 /* bit 2 set */

#define FIFOFULL_FLAG_SET 0010 /* bit 3 set */

#define FM_DID_NOT_RESPOND 0020 /* bit 4 set */

#define OLD_FM_DATA_USED 0040 /* bit 5 set */

#define CONDENSED_DATA_MODE 0100 /* bit 6 set */

#define MISSING_FM_DATA 0200 /* bit 7 set */

Bits 0–4 and 6 are set by the fm program, while bits 5 and 7 are reserved for the sonic anemometer
data aquisition program and should not be set by fm. In versions before 1.28 we had the following flag
in place of CONDENSED DATA MODE:

#define CHECKSUM_ERROR 0100 /* bit 6 set */

However, since data received with checksum errors are really bad data, we freed this flag and use it in a
different way now (see Section A.3.9).

The full data structure of a message is

14

typedef struct

{

unsigned char size; /* new! */

unsigned char status; /* new! */

unsigned char lwc[4]; /* new unsigned long int */

unsigned char time_us[4]; /* new unsigned long int */

unsigned char cabinChan[16]; /* was 8 unsigned short int */

unsigned char rejDOF[4]; /* was unsigned long int */

unsigned char rejAvgTrans[4]; /* was unsigned long int */

unsigned char AvgTransit[2]; /* was unsigned short int */

unsigned char FIFOfull[2]; /* was unsigned short int */

unsigned char ADCoverrange[4]; /* was unsigned long int */

unsigned char OPCchan[USED_OPCCHAN][4]; /* was unsigned long int */

}

FM_COOKEDDATA;

Note that we copy the analog channels data into this data structure because these are internal values
which are necessary for data processing. Channel 3 contains the ambient temperature in the sample
cell, channel 6 the static pressure and channel 7 the differential pressure. At least those are needed to
compute liquid water content (LWC). For on-line control we now compute LWC and save it as an unsigned
long integer because this format is more portable than any floating point binary format. We multiplied
the original floating point LWC by a factor 1,000,000 rounded to the nearest integer value. The time us

member contains the time period in microseconds during which the data of this record were sampled.
Because particle counts go up if the time interval between two data polls increases, we need to know this
for postprocessing our data.

The last member of this structure contains the droplet-size fractioned channels. Their number USED OPCCHAN

is 40 at maximum and must be a multiple of 10. For example, if we used 20 channels, then the size of the
message would be 20×4+20=100 bytes. Thus if byte 0 contains the number 100, we know that there
are 20 channels of data present.

To interpret the numbers we can proceed as follows. For 16 bit (2 byte) integers, we multiply the high
byte (the one that is nearest to the size byte) by 256 and add the contents of the next byte. For example,
if we defined a variable data of type FM COOKEDDATA, we can get the short unsigned integer variable fifo

by

fifo = data.FIFOfull[0]*256+data.FIFOfull[1];

A.3.2 Status Flag Details of the FogMonitor data

The status byte has 8 bits, each of which has its special meaning according to the definition given in
Section A.3.1. A bit value of 0 means that the flag is unset, a bit value of 1 means that the flag is set.

The definitions for the flag positions given in Section A.3.1 are octal values. For example, the value
0004 is bit 2 and 0010 is bit 3.

A.3.3 Reset Flag

The reset flag position is defined by RESET FLAG SET. It is not just the copy of the reset flag received from
the FogMonitor, because our fm program will detect when the FogMonitor sends data with the reset flag
high. If this is the case, it will resend the setup data structure to the FogMonitor and see, if the reset flag
is low in the next data set. If not, it will continue to try to setup the FogMonitor. Thus, the data with the
reset flag high are not forwarded to the message queues. Instead, we label the first data block with valid
data that was received after we sent the setup data structure to the FogMonitor with a high reset flag in
our setup byte. In this way we will know at the time of postprocessing, that this is the first valid data
block after a restart or reconfiguration of the FogMonitor.

A.3.4 RejDOF Flag

The RejDOF flag position is defined by REJDOF FLAG SET. The data block contains a member rejDOF

which is a counter for the number of particles that were rejected because the signal quality is lower than
the annulus. If this value is above a certain threshold, we will raise the RejDOF flag in our status byte,

15

because it may indicate improper operation of the FogMonitor. At the moment this threshold is set zero,
but depending on our experience to be gained it may be set to a higher value later.

A.3.5 RejAvgTrans Flag

The RejAvgTrans flag position is defined by REJAVGTRANS FLAG SET. The data block contains a member
rejAvgTrans which is a counter for particles that were rejected because they did not meet the criteria
for transit time. If this value is above a certain threshold, we will raise the RejAvgTrans flag in our status
byte, because it may indicate improper operation of the FogMonitor. At the moment this threshold is set
zero, but depending on our experience to be gained it may be set to a higher value later.

A.3.6 FIFOfull Flag

The FIFOfull flag position is defined by FIFOFULL FLAG SET. The data block contains a member FIFOfull
which is a counter for the number of times where the FIFOs were full and were flushed. Seemingly this
might happen in very dense fog. If this value is above a certain threshold, we will raise the FIFOfull flag
in our status byte, because it may indicate improper operation of the FogMonitor. At the moment this
threshold is set zero, but depending on our experience to be gained it may be set to a higher value later.

A.3.7 No Response Flag

The No-response flag position is defined by FM DID NOT RESPOND. If this flag is set, this means that we
did not receive a complete data block from the FogMonitor, or we did not get any response at all. Such
data will be ignored and not sent to the message queues. The principle is the following: if we poll data
from the FogMonitor but do not get the appropriate number of bytes back (or no response at all), after a
certain wait delay (currently set to 65 µs), our fm program will return and make one additional attempt
to read the remaining amount of data. If the data block is still not complete, the No-response flag is set
high. The fm program will now try to poll the next data block which normally is ok. Our experience
shows that this kind of data losses occurrs at some load level when one tries to do multiple things on the
laptop at the same time. During normal operation, there should be very few data blocks that are missed.

A.3.8 Checksum error flag

As of version 1.24 we do no longer deliver data blocks with checksum errors to the message queue F,
only to queue G. This means, that such data will not be saved on disk.

We’ll have to gain experience on how frequently this occurs and whether we need to re-send the setup
information if a checksum error occurs. In Version 1.24 we treat them like missed data blocks or data
blocks which were incomplete (not the full length).

In Version 1.28 we even got rid of this flag and reused its magic number for labeling condensed-mode
data records (see Section A.3.9).

We keep control over what’s going on by updating the log file periodically (see Section 7).

A.3.9 Condensed Data Mode

To lessen the amount of data to be saved on disk, especially during periods where there is no fog, we
introduced two condensed data modes in Verison 1.28:

• Mode 1: if all droplet counters of all size fractions are zero, we only save the base data without the
channels containing the droplet counts. In this mode the typical block size is 42 bytes independent
of the number of channels used in the FogMonitor. This condenses the FogMonitor data by 65%
compared to the standard mode without condensation.

• Mode 2: if some of the droplet counters were greater than zero, but none of them exceeded 255, we
saved the counters in 1-byte integers instead of the standard 4-byte integers. This means that the
block size is 42 bytes plus the number of channels, thus 62 bytes if we used 20 channels. Compared
to the non-condensed size of 122 bytes (42 bytes of base data plus 20 times 4 bytes of droplet
counts) this is still a condensation by 49%.

If the CONDENSED DATA MODE is not set then the data block size is either 2 bytes if no FogMonitor data
is available, or it is 42 bytes plus 4 time the number of droplet size fractions (channels) in use. For
example, with 20 channels active this would be 122 bytes.

16

A.3.10 How to know the droplet size definitions of each FM-100 channel?

The boundaries for each channel of the FM-100 are defined in fmsetup.c of the fm program. Since we
have a collection of possible settings there it may not be perfectly clear what we actually used. Thus,
we should always save the information of the settings that we used in a separate file that allows us to
compute the droplet sizes later.

This can be done with a command line option to fm: For better control about what we are doing and
what we will be doing a new option was introduced in version 1.34 of fm, the -s option.

When starting fm with this option there is no need to have a connection to the instrument, it works also
offline. It saves the current setup string into a file with the name defined in fm.h by SETUPSTRING FILE.
Currently we use the name “setup.giub”. Note that on MacOS X this file for some unknown reason only
has the executable flag set and is not readable until we change the permissions with

chmod a+r setup.giub

This string can then be decoded with a tool in the TOOLS directory of fm, decodesetup (compile it
first in the TOOLS directory of fm using the command make decodesetup):

decodesetup setup.giub

The output is similar to this:

ESC = 0x1b

COMMAND_NR = 0x01

threshold = 20

transRej = 0x00

chanCnt = 40

dofRej = 0x01

flags = 0x02

avgTransWeight = 5

attAccept = 95

divisorFlag = 0x00

ct_method = 0x01

channel[00] threshold 17

channel[01] threshold 42

channel[02] threshold 92

channel[03] threshold 149

channel[04] threshold 192

channel[05] threshold 236

channel[06] threshold 282

channel[07] threshold 334

channel[08] threshold 369

channel[09] threshold 403

channel[10] threshold 437

channel[11] threshold 526

channel[12] threshold 601

channel[13] threshold 681

channel[14] threshold 764

channel[15] threshold 852

channel[16] threshold 943

channel[17] threshold 1038

channel[18] threshold 1152

channel[19] threshold 1252

channel[20] threshold 1356

channel[21] threshold 1463

channel[22] threshold 1572

channel[23] threshold 1685

channel[24] threshold 1779

channel[25] threshold 1908

channel[26] threshold 2041

17

channel[27] threshold 2178

channel[28] threshold 2319

channel[29] threshold 2464

channel[30] threshold 2612

channel[31] threshold 2764

channel[32] threshold 2921

channel[33] threshold 3080

channel[34] threshold 3244

channel[35] threshold 3411

channel[36] threshold 3582

channel[37] threshold 3730

channel[38] threshold 3911

channel[39] threshold 4096

cksum = 5295

Although our software is generally made in a way that does not need any DOS or Windows utilities
from the manufacturer of the FM-100, it is not sufficiently described in the manual of the FM-100 how to
compute the droplet diameters from the above thresholds. We therefore used their PACS software to just
get the information of what the geometric mean droplet size of each channel actually is. This information
is also used in fmsetup.c to compute LWC on the fly.

If we want to do our own analysis with the raw data we have to be able to assign a droplet size for
each of the channels. If we have not done this before, we can enter all the threshold values above to the
PACS software and then yield the droplet sizes that we could use. For our standard setting these would
be the aerodynamic mean diameters for each channel (in R syntax):

dropsize <- c("1.500","1.93649","2.95804","3.96863","4.97494","5.97913","6.98212",

"7.98436","8.98610","9.98749","10.98863","11.98958","12.99038","13.99107",

"14.99166","15.99219","16.99265","17.99305","18.99342","19.99375","20.99405",

"22.23736","23.73815","25.23886","26.73948","28.24004","29.74054","31.24100",

"32.74141", "34.24179","35.74213","37.24245","38.74274","40.24301","41.74326",

"43.24350","44.74371","46.24392","47.74411","49.24429")

A.4 IRGA data

A.4.1 Licor 7500

The only specialty here is that we used 3-byte integers for the H2O and CO2 data arriving from the
LiCOR 7500 since there are no additional significant bits necessary than the 24 bits provided in this way.
However, when reading in binary data you should be aware that you need to read the data byte-by-byte,
because other data structures may be aligned with even numbers of bytes (which normally confuses
beginners who are not aware that empty bytes are inserted in such reads depending on platform and
programming language).

Table 7: IRGA data saved from the LiCOR 7500 open path instruments.

Bytes Component Unit Offset
1 size of IRGA data block bytes
2 status of IRGA data aquisition code, Table 8
3 status byte from the LiCOR 7500 IRGA code

4–6 H2O concentration 0.001 mmol m−3

7–9 CO2 concentration 0.0001 mmol m−3

10–11 IRGA temperature 0.01 K 100 K
12–13 IRGA pressure 10 Pa
14–16 IRGA cooler voltage 0.0001 Volts

As an example, the H2O data are computed from bytes B4, B5, and B6 in the following way:

H2O concentration = 0.001 · (65536B4 + 256B5 +B6) ,

which yields the values in mmol m−3.

18

Status codes of the data aquisition are given in Table 8, where the values in the data file are a binary
OR combination of the status bits. Under normal operation, only codes 0000 and 0040 octal should occur.
A special note follows on code 0040.

Table 8: Codes of the IRGA data aquisition

Bits set Binary Octal Description
none 00000000 0000 Status OK, no problems

5 00010000 0020 IRGA did not respond
6 00100000 0040 Status OK, old data used
8 10000000 0200 not OK, IRGA data are missing

Code 0040: This is the code to show that we are either undersampling the IRGA, or—if the IRGA
should deliver data at the same nominal rate as the sonic anemometer—that the IRGA data are laging
the sonic data by a certain time period. By default I have set up the MAX_IRGA_REPLICATION definition
in the source code to allow for 5 consecutive replication of old IRGA data records. That means that if we
run the sonic at 100 Hertz but the IRGA at 20 Hertz, the 20-Hertz data will be copied 5 times into the
merged binary file without any additional error code. But if for example the IRGA happens to fail, after 5
copies we will get code 0200 and the IRGA data structure in the binary file will immediately be reduced
to the 2 bytes which are always present in the file.

Under normal operation, when both the sonic and the IRGA are running at 20 Hertz, there is an
undulation between periods with code 0000 and periods with 0040 where this only indicates that in the
first case the IRGA data have already arrived in our data queue when we try to merge it with the sonic
data, and in the latter case we have not received the new data yet and thus will use the old record (the
new record will thus arrive shortly after we have merged the data and the next time. This timing issue is
normal with asynchronic data aquisition and has no implication on data quality because we compute the
time lag per averaging interval anyway.

A.4.2 Licor 7000

We used the same concept when we started to support the Licor 7000 closed path instrument. However,
in order to be able to keep the Licor 7500 data apart from the Licor 7000 data, we use a record size that
is only 15 bytes in the case of the Licor 7000 (it is 16 bytes for the Licor 7500). Table 9 shows the details.

Table 9: IRGA data saved from the LiCOR 7000 closed path instruments.

Bytes Component Unit Offset
1 size of IRGA data block bytes
2 status of IRGA data aquisition code, Table 8
3 Diag byte from the LiCOR 7000 IRGA code

4–6 H2O concentration 0.001 ppt
7–9 CO2 concentration 0.0001 ppm

10–11 IRGA cell temperature 0.01 K 100 K
12–13 IRGA cell pressure 10 Pa
14–15 internal pump voltage 0.0001 Volts

A.4.3 Licor 7200

Support for the Licor 7200 was introduced in summer 2012 in version 7.02, but in contrast to the Licor
7500 and Licor 7000 we switched to TCP/IP communication for the Licor 7200 (see the licor program).

In July 2017 we slightly changed the data format in sonicreadHS version 8.00 or higher: here the
Licor 7200 status information is saved as 2 bytes whereas with older versions of sonicreadHS this status
information was only 1 byte (a change that reflects the change in Licor firmware of the instrument). Note
that the change is made in sonicreadHS, not in licor, but this affects the position of the variables in the
binary data structure shown below.

There was one problem that could not be solved at the time the data acquisition was written and which
affects all data collected until this may (or may not) be solved in a future version: every 20th record or

19

so a flow rate of 0.0 L min−1 is reported which leads to an erroneous CO2 and H2O concentration in the
primary variable(the dry mole fraction) whereas the mole density is OK. In the code I simply reduced
the screening boundaries in sonicavg.h (upper margin is now 1500 instead of 5000 for CO2 and H2O,
respectively).

Another issue is that version 7.02 used at the Toolik Wetland site in 2012 stored an erroneous version
and date information (in WESAT3 header information). When checking the new Davos data processing
we will have to check for this in the WECOM3 format as well!

The data are stored as we would store those of the Licor 7500, but the byes have a different assign-
ment. Only the first 3 bytes are the same as for the 7500, the others are as decribed below and in Table
10. Important: Records from the Licor 7200 are saved with 25 or 26 bytes binary, those of the Licor 7500
have 16 bytes and those of the Licor 7000 have 15 bytes. Note that we have 25 bytes from the Licor
7200 if we recorded with sonicreadHS version up to 7.09 but 26 bytes since version 8.00. The structure
below shows the 25-byte variant—for the 26 byte variant the only difference is that IRGADATA LICOR
has two bytes. In my converter I did not change anything with the structure, but if IRGADATA SIZE shows
26, then I read the extra byte after IRGADATA LICOR; after having read this extra byte of the 2-byte status
information, then all other variables are interpreted correctly.

#define IRGADATA_SIZE 0 /* should be 0 -> first byte of record */

#define IRGADATA_STATUS 1 /* should be 1 -> second byte of record */

#define IRGADATA_LICOR 2 /* this is the Licor 7500 status byte */

/* or the Licor 7000 Diag number */

/* if 2 bytes from the Licor 7200 are saved, */

/* then we have to read an extra byte here! */

#define IRGA7200DATA_H2OMFD 3 /* bytes 3-5: H2O dry mole fraction mmol/mol */

#define IRGA7200DATA_CO2MFD 6 /* bytes 6-8: CO2 dry mole fraction umol/mol */

#define IRGA7200DATA_H2OD 9 /* bytes 9-11: H2O density mmol/m3 */

#define IRGA7200DATA_CO2D 12 /* bytes 12-14: CO2 density mmol/m3 */

#define IRGA7200DATA_TEMP 15 /* bytes 15-16: IRGA temperature */

#define IRGA7200DATA_PRESS 17 /* bytes 17-18: IRGA pressure */

#define IRGA7200DATA_APRESS 19 /* bytes 19-20: atmospheric pressure */

#define IRGA7200DATA_COOLER 21 /* bytes 21-22: IRGA cooler voltage */

#define IRGA7200DATA_FLOWRATE 23 /* bytes 23-24: IRGA volumetric flow rate */

#define IRGA7200DATA_RECLEN 25 /* total length of binary IRGA 7200 record */

Table 10: IRGA data saved from the LiCOR 7200 enclosed path instruments. In blue the position is shown
for 26-byte records, whereas the black byte positions are showing the older 25-byte records.

Bytes Bytes Component Unit Offset
1 1 size of IRGA data block bytes
2 2 status of IRGA data aquisition code, Table 8
3 3 Diag byte from the LiCOR 7200 IRGA code

5–7 4–6 H2O dry mole fraction umol/mol
8–10 7–9 CO2 dry mole fraction umol/mol

11–13 10–12 H2O concentration 0.001 mmol m−3

14–16 13–15 CO2 concentration 0.0001 mmol m−3

17–18 16–17 IRGA temperature 0.01 K 100 K
19–20 18–19 IRGA pressure 10? Pa
21–22 20–21 atmospheric pressure 10? Pa
23–24 22–23 IRGA cooler voltage 0.0001 Volts
25–26 24–25 IRGA volumetric flow rate XXXX

In the first few files the header has this error: TO BE WRITTEN. The header information defines them
as file type I, if only one IRGA is used and this one IRGA is a Licor 7200.

Well, currently I don’t see where date and header info should be wrong, maybe this was a version
before I used it productively at Toolik Wetland – check the log files and then rewrite this text!

A.4.4 Raw data errors of the Licor 7200

The Licor 7200 instrument used at Toolik Wetland has the following low-level bug that needs to be taken
care during data processing:

20

In more or less regular intervals a record arrives that has a temperature of 0.0 or –1.0, a cell pressure
of 0.0 or 20.0 and a cooler voltage of 0.0. Also the AGC values seems to be 0. Since these values are not
all at the end of the data record sent by the Licor 7200 it is very unlikely that this has to do with the data
acquisition. I suspect a bug in the system where the A/D system that measures these extra variables is
either behind the schedule for collecting internal variables and then the system simply sends zeros. We
receive the data in the following order:

(Data (DiagVal 8184)(CO2D 20.292)(H2OD 521.757)(Temp 26.9615)(Pres 91.4931)(APres 91.5545)

(Cooler 2.109)(CO2MFd 561.38)(H2OMFd 14.4345)(DewPt 10.8279)(VolFlowRate 0))

as of early 2013 we only recorded the lower 8 bits of the new 16-bit diagnostic data structure, but
it turns out that for tracking down such instrument issues it would be better to have both data bytes.
Should be modified in a follow-up version of the irga data acquisition program and sonicreadHS.

For now we have the feeling that the CO2D and H2OD data, the APress and VolFlowRate values
are OK and hence we should be able to deduce correct CO2MFd and H2OMFd values. But since these
errors are not perfectly synchroneous with the same variables (when it actually happens) I decided to
simply mark these values by MISSINGVALUES since we have 96.9% of good data in the test data file from
2012-07-28 that I inspected in detail.

Although I initially wrongly interpreted the issue to be the reporting of a zero flow rate by the
Licor 7200 in such cases, my detailed investigation showed that in the subset of data I analyzed
the flow rate is always correct, as is the ambient pressure and the volumentric CO2 and H2O
concentration. So if you come across some notes saying the flow rate was zero this is an error (I forgot
that my tests of which I report the data format of the Licor 7200 was done without the pump running,
hence the 0 flowrate – the algorithm correctly converts the concentrations even at zero flow rate).

A.5 Secondary IRGA data

Starting with version 7.03 we allow to record IRGA data also from a secondary instrument that we specify
with the -I# command line option. The data are saved in exactly the same way as described in Section
A.4, and the data block from the secondary IRGA immediately follows the data block from the primary
IRGA.

To distinguish files with two IRGA data blocks from those with only one, we use the file type K
instead of I. This means that we only set bit 1 in addition to what we have for type I which should make
it simple to treat these files like type I files but with an extra IRGA data block.

A.6 Extension data (QCL, LGR)

For further developments we introduced the concept of extensions, which so far were an Aerodyne QCL
system and since May 2008 a Los Gatos Research (LGR) methane analyzer. In May 2009 we extended this
to the new Los Gatos Research FGGA (Fast Greenhouse-Gas Analyzer). To mark our data files for such
extensions we had to sneak in some information into the header as described in Table 3. Additionally, a
variant of each extension version is foreseen and saved in each extension record.

Extension data are always appended to the previous records in the sequence standard data – fog
monitor data – IRGA data – extension data. Each of the additions to the standard records has at least two
data bytes that must be read:

Byte 0 contains the length of the record (thus this value must be at least 2, at max 255); this thus
limits the possibility for each extension to 253 bytes plus the two mandatory bytes.

Byte 1 contains the status information intermingled with the extension variant information. The most
significant bits of this byte (bits 4–7) contain the variant information, whereas the least significant bits
(bits 0–3) contain status information. The status codes are found in extdata.h. We should carefully keep
our Table 3 updated such that we can always find out what these extension data represent.

A.6.1 Data from a second QC-TILDAS

In sonicreadHS V. 7.09 the -e2.2 option was introduced which receives and saves QCL data from two
systems, with the first running as qclread -s0and the second running as qclread -s1 plus command-
line long options to specify the components and their order in the respective datastream. For simplicity,
a species-specific conversion is programmed in (see Table 11).

21

Table 11: Multipliers and offsets in extension version 2 variant 2 data. sonicreadHStakes the values as
they arrive from qclread, thus the conversion is defined there (look at getopt long in qcl.c). Data are
saved as 4-byte integers.

qclread sonicreadHS Known Application Component Multiplier Offset
Version Version

2.04 7.09 Lutz Merbold, Mazingira project ch4 10000 0
November 2016– n2o 10000 0

co2 100 0
h2o 1 0
no2 10000 0
nh3 10000 0
cellT 10000 0
cellP 10000 0

A.6.2 Los Gatos Research Data

Currently we have two variants of data, one for the LGR Fast Methane Analyzer (FMA, Table 12), and
one for the Fast Greenhouse-Gas Analyzer (FGGA, Table 13). They can easily be distingushed either from
their block size (byte 1 of the data block), or from the extension version information scrambled into the
status byte (byte 2), which is explained in Table 15.

Table 12: LGR FMA Data (extension version 1, variant 3).

Bytes Component Unit
1 size of LGR data block bytes – should be 15 (with data) or 2 (no data)
2 status of LGR data aquisition code, see Table 15

3–6 CH4 concentration ppb × 10,000
7–8 LGR cell pressure Torr × 100
9–10 LGR cell temperature ◦C × 100

11–14 LGR mirror ringdown time µs × 1,000,000
15 Calibration flag seems to be 0 with the FMA

Table 13: LGR FGGA Data (extension version 1, variant 4). This format uses the same format as the LGR
FMA Data (see Table 12) to which we added the three additional variables.

Bytes Component Unit
1 size of LGR data block bytes – should be 27 (with data) or 2 (no data)
2 status of LGR data aquisition code, see Table 15

3–6 CH4 concentration ppb × 10,000
7–8 LGR cell pressure Torr × 100
9–10 LGR cell temperature ◦C × 100

11–14 LGR mirror ringdown time #1 µs × 1,000,000
15 Calibration flag seems to be 2 with the FGGA

16–19 CO2 concentration ppm × 10,000
20–23 H2O concentration ppm × 10,000
24–27 LGR mirror ringdown time #2 µs × 1,000,000

In contrast to the IRGA data we moved the status bits in our data records to the 4 least significant bits
(see Table 15) and use the 4 most significant bits (bits 5–8) to save the extension variant here. This is
expressed with xxxx and yy in Table 15. Thus, for decoding, the extension variant should always be the
same in all records, irrespective of its length, whereas in the current implementation a specific extension
and variant can only have two possible lengths, either 2 (which is the minimum with the byte specifying
the length of the record and the second byte being the status information).

It is possible to find out which records were really measured and which ones were just replicated
because no new data record was available when the newest sonic anemometer data record was read. This

22

Table 14: LGR N2O/CH4/H2O Data (extension version 1, variant 7) introduced with sonicreadHS ver-
sion 8.04 and lgrread version 2.00.

Bytes Component Unit
1 size of LGR data block bytes – should be 33 (with data) or 2 (no data)
2 status of LGR data aquisition code, see Table 15

3–6 CH4 dry mole fraction ppm × 10,000,000
7–10 N2O dry mole fraction ppm × 10,000,000
11–14 H2O concentration ppm × 10,000
15–18 CH4 concentration in moist air ppm × 10,000,000
19–22 N2O concentration in moist air ppm × 10,000,000
23–24 LGR cell pressure Torr × 100
25–26 LGR cell temperature ◦C × 100
27–28 LGR ambient temperature ◦C × 100
29–32 LGR mirror ringdown time µs × 1,000,000

33 Fit flag an integer, 0–3

Table 15: Codes of the LGR data aquisition

Bits set Binary Octal Description
none xxxx0000 yy00 Status OK, no problems

1 xxxx0001 yy01 Old LGR record replicated
2 xxxx0010 yy02 LGR did not respond (this is never used)
3 xxxx0100 yy10 not OK, LGR data are missing

is shown with bit 1 high in the status byte (“old LGR record replicated”). We hard-coded the maximum
number of replications in the source code. See MAX_LGR_REPLICATION in extdata.h.

B Binary WESAT3 Raw Data Format

B.1 Header

Each data file starts with a 38 byte header of the following format:

typedef struct /* the new WESAT3 header size is 38 bytes */

{

char format[6]; /* will hold the characters WESAT3 */

unsigned char file_version; /* in case the WESAT3 header needs changes */

unsigned char file_type;

unsigned char firmware_version[6];

unsigned char serial_number[4];

unsigned char execution_para;

unsigned char trigger_src;

unsigned char analog_range;

unsigned char data_status;

unsigned char terminal_mode;

unsigned char prompt;

char hostname[10];

unsigned char file_create_time[4];

} HEADERTYPECSAT3;

These are the elements in this header:

• format: this contains the constant string WESAT3 that allows for easy detection of the data file
format in the future.

• file version: this is a version number (0–255) that will allow us to keep track of any substantial
changes that need to be labeled with a new version number. With the introduction of this file format

23

we started with version 0 in February 2007. This number will only increase if it is necessary. Note
that many variants of how data are arranged in these files are clearly determined otherwise (see
later).

• file type: exactly the same as for WECOM3 files (see Section A.1) but it should be understood that
numbers 0–3 should not occur in this field since these numbers specify the RCOM3 formats from
Solent sonics, and we never write WESAT3 files if we run Solent sonics. Thus, having a CSAT3
and using WESAT3 output format basically excludes these numbers from being used here. The
character codes we expect here are the following. Type A is specifying sonic-only data (no extra
instruments), saved as decimal character 65; type F, specifying sonic plus FogMonitor is decimal
character 70; type G, sonic plus FogMonitor plus IRGA, is decimal character 71; type I, sonic plus
IRGA, is decimal character 73 (corresponding to the position of the capital letters in the ASCII
character set). All other characters are a binary OR combination of these basic types with the
extension version and variant (e.g. when adding QCL data or any other data from an extension
instrument).

• firmware version: this 6-character field is prepared to hold the ASCII representation of the CSAT3
version information received via the status information. As of Version 5.02 we still have not found
the time to implement this and thus this field is currently 6 bytes of null characters (0x00).

• serial number: serial number of the CSAT3 sonic used in 4-byte ASCII representation as received
via the status information from the sonic.

• execution para: the execution parameter setting received via the status information from the sonic.
This information defines the sampling rate (see CSAT3 manual for the possibilities there are). h
is our standard in Panama and means internal 60-Hertz measurements that were averaged by the
sonic to 20 Hertz output.

• trigger src: trigger source information as received via the status information from the sonic, should
be 0.

• analog range: see CSAT3 manual, no relevance for our data files.

• data status: CSAT3 data status at startup, should be “good data” (that is 0).

• terminal mode: CSAT3 terminal mode status, should be T.

• prompt: CSAT3 prompting mode status, should be U for “unprompted mode”.

• hostname: in this 10-byte field we save the host name of the computer that ran the data acquisition.
If the hostname is more than 10 characters then it will be truncated to exactly 10 characters. In our
set-ups we give the computer that does the data acquisition the unique name of the site, thus this
field allows us to know where the data came from in case there are duplicate filenames (by default
we do not save the site information in the file names).

• file create time: exactly the same as for WECOM3 files (see Section A.1). In my variant of this
binary format I did use the time stamp in local time, that is, this 4-byte long integer gives the
seconds since 00:00:00 local time, 1 January 1970. To my understanding, the RCOM3 format is
using time in UTC, thus depends on the time zone you have selected on your computer while doing
the data aquisition. I have also used the little endian encoding also for the time stamp as in RCOM3,
but be aware that all other data are saved in big endian format!

B.2 Data

After this header the binary data start with the first sonic data record, followed by the data from additional
digital instruments in the order: FogMonitor, IRGA, Extensions. If we use different types of IRGAs we
will make sure that they are saved with a different number of bytes (which is anyway the most realistic
case because each IRGA has special variables that the other does not have) and thus it will be possible to
determine the type from the number of bytes of these records.

The same applies to the extension data, but here it will most likely not be possible to keep track in the
same way as with the IRGA since the extensions can also be experimental (not necessarily operational
as with FogMonitor and IRGA), thus the same instrument may be saved with different numbers of bytes

24

depending on short-term decisions. Thus, we use the possibility to specify an extension version and an
extension variant. The idea is that the versions are only changed if absolutely necessary since we only
have versions 1–7 available unless we change the header format of our files. As of sonicreadHS version
5.02 we only have extension version 1 implemented and so far we only used version 1, variant 0 for QCL
data from EMPA (and accidentally also variant 2, which however is no problem to be re-used – it was
only a bug in the first week of operation when this concept was introduced where we saved IRGA data as
duplicates in the place where QCL data should have been).

For future developments: I suggest that version 1 is assigned to all the experimental stuff that Werner
Eugster does (currently QCL, but it could be more), and version 2 will be used by similar projects of other
people (in this way they can keep track of the variants within that specific version themselves). Table 3
tries to keep track of all known developments.

B.2.1 Standard anemometer data

Data records from the CSAT3 sonics are 12 bytes long, consisting of 10 bytes of data (2-byte short inte-
gers) plus two delimiters that we also save in the files. The CSAT3 have no analog inputs and thus the
record size is exactly the same for all variants. The records are saved in the format they arrive and thus
the detailed description in the CSAT3 manual can be used to decode the data. Table 16).

Table 16: Base data from the CSAT3 sonic anemometer

Bytes Component Unit
1–2 u wind component depends on range
3–4 v wind component depends on range
5–6 w wind component depends on range
7–8 speed of sound (difference to 340.0 m/s) mm/s
9–10 diagnostic word (status, ranges, counter) —

11–12 delimiters: 0x55 followed by 0xaa —

The CSAT3 uses a little endian byte order, that is, in a 2-byte word we find the most significant byte
not first, but last in the row of bytes (this is typical for Intel-type processors, whereas Sun Sparc and
others use the high-endian byte order). During data acquisition we never do any rearrangement of byte
orders. But it should be kept in mind that if problems occur when decoding binary files, it could be
related to byte order issues, although we tried hard to get a binary format that does not depend on the
architecture of the computer hardware of the data acquisition system.

B.2.2 IRGA, QCL and LGR data

If additional data are recorded in combination with the CSAT3 data stream, then the additional records
with IRGA, QCL and/or LGR data are appended to the binary data records from the CSAT3 in the same
way as in the WECOM3 data format. See details under Section A.4, A.5, A.6.

C Hints and Suggestions

When decoding raw data there are a few tricky issues to be solved:

• in general we use the concept to save the higher byte first, followed by the lower significant byte(s)
in the data stream; however, in the Solent header a mixture is found where the time is saved in the
reverse notation

• an odd number of bytes of the header can be tricky to read with some software

• the concept of only saving 2 bytes if no data from an instrument we actually want to record are
available gives trouble with some software

The suggestion is to use ethconvert to translate binary raw data files to ASCII files if needed. I
typically use this in combination with the statistics software R, using a pipe() to read in data output by
ethconvert. This also solves the issue with intermediate (huge) ASCII files: they are not needed since
one can directly work with raw data files.

25

C.1 How to get a CSAT3 up and running

There are some special issues one must know when using a Campbell CSAT3 with this software:

• What to do when the CSAT3 comes new or repaired from Campbell or does not work due to other
reasons?

What to do when the CSAT3 comes new or repaired from Campbell or does not work due to other
reasons?

Campbell has this interesting concept that a CSAT3 does not do what it’s supposed to do unless you tell
it that it should behave like a measuring device. Here are some hints. The easiest way (if it works) is
to activate the sonic manually. To do this, hook up the serial port to one of your computer’s serial ports,
power on the CSAT3, then open two Linux terminal shells. In one you key in a command to read from the
sonic, in the other you key in commands to be sent to the sonic. Since it works at 9600 baud, you do not
have to set any specific port settings, just try with the defaults. If your serial port is known as /dev/ttyM0
under Linux (that would be the first serial port, COM1, on a Moxa embedded computer), then key in

cat /dev/sonic

in your first terminal shell. Nothing will be shown except the command, but just be patient. Then go to
your second terminal shell. Here you key in the command

echo "S\r" >> /dev/sonic

Now watch the text appearing in the first terminal mode. If it looks like this example: 0g02D1836U,
then we are in good shape; we now can switch to automatic mode by keying in the following in the
second terminal window:

echo "&\r" >> /dev/sonic

Now data should arrive in continuous mode in the first terminal window. If the data are not arriving
at a frequency of 2 Hz or more, then our software may give you an error message and stop. In this case,
you must increase the output frequency by sending another command,

echo "&\r" >> /dev/sonic

If you think that your sonic is not sending at a high frequency (e.g. you only see a group of question
marks every second), then also send the command to put it to 10 Hz before trying out sonicreadHS:

echo "A9\r" >> /dev/sonic

Now you should see a set of binary data arriving quite quickly. Note that unreadable characters are
shown as question marks, and since backspace etc. can be in the binary data, sometimes you see a step
back in the arriving data, which is just OK – sonicreadHS will configure the sonic anemometer to its
correct settings, but to be able to do so it must find the sonic, and the assumptions in the software are
(a) that the sonic is sending data continuously (thus, cannot be in polled mode or triggered mode), and
(b) that it is sending at a frequency which is higher than 2 Hz typically.

Finish your work by pressing Ctrl+C in the first terminal window where you see your data arriving.
Then you can test whether our acquisition program works by using the verbose option at startup, that is

sonicreadHS -v -M CSAT3 -o

For this to work there must be a device with the name /dev/sonic otherwise you will get a message
tellling you to create this device (or make a symbolic link).

For troubleshooting purposes you find the output of a correct startup sequence in the following (most
of this output will be suppressed if the -v switch is not used):

26

root@Moxa:/var/hda/data/Moxa# /var/hda/progs/sonicreadHS -v -M CSAT3 -o

Option M with optarg CSAT3 detected

Using Campbell CSAT3 protocol for sonic anemometer

--

Switching CSAT3 delimiter mode OFF

--

Sonic protocol number used: 3

Highest priority on system is 99, lowest is 1

We try to get priority 1

Alarm signal received.

COMMENT This is a sample sonicrc file by Werner Eugster

COMMENT which is used for the CarboEuropeIP data aquisition systems

DATAPATH ./

COMMENT the old sonic anemometer has 5, the new HS sonic 6 analog channels

ANALOGS 0

COMMENT MODE is ignored; leave it with a 1

MODE 1

COMMENT the old sonic anemometer works with 4800, 9600 or 19200

COMMENT the new HS sonic anemometer works with 9600, 19200 or 38400

BAUDRATE 4800

COMMENT CHANGEFILE is an integer; after ... hours a new file will be opened

CHANGEFILE 6

COMMENT FILECODE is one character that will appear in the filename ext.

FILECODE b

LOGFILE Moxa.log

COMMENT below are additional settings for the new Solent HS sonic

COMMENT AVERAGE 1 is 100 Hz, AVERAGE 5 is 20 Hz, AVERAGE 10 is 10 Hz

AVERAGE 5

COMMENT define where IRGA data should be tanken from for averaging

COMMENT valid options are: ANALOG, DIGITAL, BOTH or NONE

IRGA DIGITAL

COMMENT IRGA 2nd order conversion from millivolts to concentration

COMMENT introduced in version 3.01; conc = a0 + a1*x + a2*x^2

COMMENT format: three floating point numbers for a0, a1, and a2

COMMENT only used for analog channel measurements

IRGA_CO2 0.0 1.0 0.0

IRGA_H2O 0.0 1.0 0.0

message queue 65538 installed.

opened serial port /dev/sonic

If program hangs when trying a baud rate then you must

unplug the power supply to the sonic and plug it in again.

If you use an old sonic you MUST use the -R2 switch at startup

otherwise the program will wait infinitely shortly after

If you use a CSAT3 sonic you MUST use the -MCSAT3 switch at startup

Trying baud rate 15...

Synchronizing data WITHOUT Delimiter

TEST Pt 1

Pass 0

(bytesavailable=0) --fail++ (result=1) . TEST Pt 2

INFO: Now trying undelimited mode (Test Pt 3)

bytesavailable=100

i=0: 37 41 42 47

i=1: 63 63 63 63

i=2: 55 60 52 47

i=3: 0 0 0 0

i=4: 6 6 3 4

i=5: 63 63 63 63

i=6: 14 41 1 8

i=7: 22 22 22 22

27

i=8: 11 12 13 14

i=9: 15 15 15 15

INFO: FOUND block structure at offset 8

Sonic found

CSAT3 sampling rate g

Synchronizing data WITHOUT Delimiter

TEST Pt 1

Pass 1

(bytesavailable=0) --fail++ (result=1) . TEST Pt 2

INFO: Now trying undelimited mode (Test Pt 3)

bytesavailable=100

i=0: 36 38 44 53

i=1: 0 0 0 0

i=2: 34 32 30 29

i=3: 0 0 0 0

i=4: 0 0 3 9

i=5: 63 63 63 63

i=6: 59 59 59 54

i=7: 23 23 23 23

i=8: 54 55 56 57

i=9: 15 15 15 15

INFO: FOUND block structure at offset 8

Sonic found

blocksize will be 10 bytes

Synchronizing data WITHOUT Delimiter

TEST Pt 1

Pass 2

(bytesavailable=0) --fail++ (result=1) . TEST Pt 2

INFO: Now trying undelimited mode (Test Pt 3)

bytesavailable=100

i=0: 44 40 35 31

i=1: 0 0 0 0

i=2: 44 40 36 30

i=3: 0 0 0 0

i=4: 21 23 23 23

i=5: 0 0 0 0

i=6: 53 7 61 61

i=7: 23 23 23 23

i=8: 51 52 53 54

i=9: 15 15 15 15

INFO: FOUND block structure at offset 8

Sonic found

Getting sonic status (CSAT3)...

...found prompt [>] in ?

Received length of status (1)

Status (Ss 0

?)

Received length of status (1)

Status (Ss 0

?)

Received length of status (1)

Status (Ss 0

?)

Received length of status (1)

Status (Ss 0

?)

Received length of status (1)

Status (Ss 0

28

?)

Received length of status (1)

Status (

s 0

?)

Received length of status (1)

Status (S0g00T1836U)

Now determining the Sonic Status

Decoding Status: S0g00T1836U

The trigger source is the CSAT3 Timer

Execution Parameter g corresponds to 60 Hz -> 10 Hz

Analog Range is OFF

Data Status: Good Data

CSI Mode

CSAT3 serial no is 1836

Unprompted Mode

Synchronizing data WITHOUT Delimiter

TEST Pt 1

Pass 3

(bytesavailable=0) --fail++ (result=1) . TEST Pt 2

INFO: Now trying undelimited mode (Test Pt 3)

bytesavailable=100

i=0: 35 39 46 52

i=1: 63 63 63 63

i=2: 36 20 12 9

i=3: 0 0 0 0

i=4: 48 40 31 25

i=5: 62 62 62 62

i=6: 55 60 8 17

i=7: 22 22 22 22

i=8: 31 32 33 34

i=9: 15 15 15 15

INFO: FOUND block structure at offset 8

Sonic found

Host: Moxa

Synchronizing data WITHOUT Delimiter

TEST Pt 1

Pass 4

(bytesavailable=0) (result=1) . TEST Pt 2

INFO: Now trying undelimited mode (Test Pt 3)

bytesavailable=100

i=0: 32 50 63 30

i=1: 0 0 63 63

i=2: 39 44 50 49

i=3: 0 0 0 0

i=4: 40 54 63 63

i=5: 62 62 62 62

i=6: 34 40 58 14

i=7: 22 22 22 22

i=8: 27 28 29 30

i=9: 15 15 15 15

INFO: FOUND block structure at offset 8

Alarm signal received.

COMMENT This is a sample sonicrc file by Werner Eugster

COMMENT which is used for the CarboEuropeIP data aquisition systems

DATAPATH ./

COMMENT the old sonic anemometer has 5, the new HS sonic 6 analog channels

ANALOGS 0

COMMENT MODE is ignored; leave it with a 1

29

MODE 1

COMMENT the old sonic anemometer works with 4800, 9600 or 19200

COMMENT the new HS sonic anemometer works with 9600, 19200 or 38400

BAUDRATE 4800

COMMENT CHANGEFILE is an integer; after ... hours a new file will be opened

CHANGEFILE 6

COMMENT FILECODE is one character that will appear in the filename ext.

FILECODE b

LOGFILE Moxa.log

COMMENT below are additional settings for the new Solent HS sonic

COMMENT AVERAGE 1 is 100 Hz, AVERAGE 5 is 20 Hz, AVERAGE 10 is 10 Hz

AVERAGE 5

COMMENT define where IRGA data should be tanken from for averaging

COMMENT valid options are: ANALOG, DIGITAL, BOTH or NONE

IRGA DIGITAL

COMMENT IRGA 2nd order conversion from millivolts to concentration

COMMENT introduced in version 3.01; conc = a0 + a1*x + a2*x^2

COMMENT format: three floating point numbers for a0, a1, and a2

COMMENT only used for analog channel measurements

IRGA_CO2 0.0 1.0 0.0

IRGA_H2O 0.0 1.0 0.0

FILENAME=./2009072001.b42

Error sending message to queue with sendtoqueue()

Error sending message to queue with sendtoqueue()

Error sending message to queue with sendtoqueue()

correctly setting back the record numbering from 63 to 0.

Explanation: after the sonic was found, communication was established, the sonic anemometer is
configures. Please note that it will use the sampling rate that you specify in sonic.rc (see EXEPARA in
Section 8). If nothing is specified, then it will use mode g as you can see in the output above in the line

Execution Parameter g corresponds to 60 Hz -> 10 Hz

References

Spiegel, J. K., P. Zieger, N. Bukowiecki, E. Hammer, E. Weingartner, and W. Eugster (2012) Evaluating
the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-
100). Atmospheric Measurement Techniques 5, 2237–2260.

30

	Introduction
	Quickstart Notes
	Principle of Operation
	Getting Started
	POWERCONTROL Option

	Running the Program More Than Once
	File Header
	WECOM3 Header Format
	Freeform extension data option

	Important update with sonicreadHS version 8.00 and higher
	WESAT3 Header Format

	The Log File
	Interpretation of the Log File
	Other Means of Controlling the Operation of the FogMonitor
	Other Means of Controlling the Operation of the IRGA

	The Resource File
	Binary WECOM3 Raw Data Format
	Header
	Data
	Standard anemometer data
	Additional data from digital instruments

	FogMonitor data
	Data Format and Flag Bits of the FogMonitor data
	Status Flag Details of the FogMonitor data
	Reset Flag
	RejDOF Flag
	RejAvgTrans Flag
	FIFOfull Flag
	No Response Flag
	Checksum error flag
	Condensed Data Mode
	How to know the droplet size definitions of each FM-100 channel?

	IRGA data
	Licor 7500
	Licor 7000
	Licor 7200
	Raw data errors of the Licor 7200

	Secondary IRGA data
	Extension data (QCL, LGR)
	Data from a second QC-TILDAS
	Los Gatos Research Data

	Binary WESAT3 Raw Data Format
	Header
	Data
	Standard anemometer data
	IRGA, QCL and LGR data

	Hints and Suggestions
	How to get a CSAT3 up and running

